
HOMEWORK 13

Due date: Monday of Week 14

Exercises: 12.4, M.1, M.2, M.9, M.10, M.14.pages 75-77.

Exercises: 7.7, 7.8, 7.9, 7.10, 8.1, 8.2, 8.4, 11.1, 11.2, 11.3, 11.5, 11.8, M.7, pages 191-194.

Problem 1. Let G be a group (not necessarily finite) and H < G be a subgroup of G. Recall that
G/H denotes the set of all left H-cosets and H\G denotes the set of all right H-cosets. Show that
f : G/H → H\G defined by f(gH) = Hg−1 is well-defined and defines a bijection between G/H and
H\G. In particular, the number of left cosets is the same is the number of right cosets.

There are at least two elements φ0, φ1 in Aut(Z/nZ) defined by

φ0 = idZ/nZ;φ1(x) = −x,∀x ∈ Z/nZ.

Consider the map

φ : Z/2Z→ Aut(Z/nZ)

defined by φ(0) = φ0, φ(1) = φ1. It is clear that φ is a group homomorphism.

Problem 2. Show that Z/nZ oφ Z/2Z is isomorphic to Dn, the dihedral group of order 2n.

Problem 3. Determine the order of the group GLn(Fp), where p is a prime number.

Hint: Consider the action of GLn(Fp) on Fnp by left multiplication.
The next several problems are about double cosets, and most of them could be in last HW.

Problem 4. Let F be a field and let Bn(F ) ⊂ GLn(F ) be the upper triangular subgroup.

(1) Determine the double cosets B2(F )\GL2(F )/B2(F ).
(2) How about Bn(F )\GLn(F )/Bn(F )?

This problem might be hard. It is related to the UPL (upper triangular, permutation subgroup,
and lower triangular subgroup) decomposition of a matrix, See HW 3, Problem 5 of last year. If you
don’t know how to do the general problem, try the case when n = 2 and F = F2 (or F3).

Let G×X → X be an action of a group G on a set X. Recall that G\X denote the set of orbits.

Problem 5. Let G be a group and H,K are subgroups of G. Show the following basic properties of
double cosets.

(1) For x ∈ G, the double coset HxK is a union of right H-cosets and a union of left K-cosets.
More precisely,

HxK =
∐

Hxk∈H\HxK

Hxk =
∐

hxK∈HxK/K

hxK.

(2) Let G act on the left cosets G/K from the left by x.(gK) = (xg)K. See Section 6.8 of Artin.
We restrict this action to H and consider the action

H ×G/K → G/K

defined by (h, gK) = (hg)K. Show that there is a bijection between the double coset H\G/K
and the set of orbits H\(G/K). This explains that the notation is consistent. There is a
similar statement when we switch the role of H and K.

(3) Suppose that all groups are finite. For x ∈ G, show that

|HxK| = [H : H ∩ xKx−1]|K| = [K : K ∩ x−1Hx]|H|.
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(4) Show that

[G : H] =
∑

HxK∈H\G/K

[K : K ∩ x−1Hx]

and

[G : K] =
∑

HxK∈H\G/K

[H : H ∩ xKx−1].

(5) Consider the group action of (H ×K) on G defined by

((h, k), g) = hgk−1, (h, k) ∈ H ×K, g ∈ G.
Check that this is a group action and there is a bijection between H\G/K and the orbits of
this action.

(6) Suppose G is finite. For h ∈ H, k ∈ K, consider G(h,k) = {g ∈ G : hgk = g}. Show that

|H\G/K| = 1

|H||K|
∑

(h,k)∈H×K

|G(h,k)|.

For the last one, use Ex. M.7, page 194 of Artin. The other parts are routine.
The next problem is roughly talked in class.

Problem 6. Let n > 1 be a positive integer and consider the group SOn(R) = {g ∈ GLn(R) : ggt = In,det(g) = 1} .
Consider the subgroup H of SOn(R) defined by

H =

{[
h

1

]
, h ∈ SOn−1(R)

}
.

Show that there is a bijection

G/H ∼= Sn−1,

where Sn−1 =
{

(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n = 1
}

, which is the standard (n − 1)-sphere. Sim-
ilarly, we consider the group SUn = {g ∈ GLn(C) : gg∗ = In,det(g) = 1}. We view SUn−1 as a
subgroup of SUn via the embedding

h 7→
[
h

1

]
, h ∈ SUn−1.

Show that there is a bijection

SUn/SUn−1 ∼= S2n−1.

You don’t have to submit solutions for the next several problems. They are for your
summer break.

Problem 7. Let p > 2 be a prime number and n be a positive integer. Consider the group

SOn(Fp) =
{
g ∈ GLn(Fp)| ggt = In,det(g) = 1

}
.

Compute the order of SOn(Fp).

Hint: If you use the method the last problem, you need to know the order of the sets

Xn :=
{

(x1, . . . , xn) ∈ Fnp : x21 + x22 + · · ·+ x2n = 1.
}

It is not easy to compute this. The answer is

|Xn| =

{
pn−1 + (−1)

n−1
2 ·

p−1
2 p

n−1
2 2 - n

pn−1 − (−1)
n
2 ·

p−1
2 p

n
2−1 2|n

This is Proposition 8.6.1, page 102 of Ireland-Rosen: A classical introduction to modern number
theory (2nd edition). See also this link.

The group SOn(Fp) is still the group which preserve a symmetric bilinear form on vector spaces
over Fp. But this time, this bilinear form is not an inner product. Inner products are only defined
on vector spaces over R or C, while bilinear forms can be defined over any fields. There is also a
way to defined Un(Fp) and SUn(Fp) and similarly one can ask how many elements are there in these
groups.

https://mathoverflow.net/questions/217922/the-number-of-solution-of-x-12-cdots-x-k2-equiv-lambda-bmod-q
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The orthogonal groups over finite fields also depends on the symmetric bilinear form defined on
that. Classifying symmetric bilinear forms over Fp is also an interesting question. We give one
example below. Consider the group

SO1,1(Fp) =

{
g ∈ GL2(Fp) : g

[
1

1

]
gt =

[
1

1

]}
.

Problem 8. Let p > 2 be a prime.

(1) Show that |SO1,1(Fp)| = p− 1.

(2) Show that |SO2(Fp)| = p− (−1)
p−1
2 .

(3) In particular, if p ≡ 1 mod 4 (for example, if p = 5, 13, 17...), then |SO1,1(Fp)| ∼= |SO2(Fp)|.
Is it true that SO2(Fp) ∼= SO1,1(Fp) if p ≡ 1 mod 4? If so, prove it.

Try to generalize the last part to general n by considering the corresponding symmetric bilinear
forms. Hint: Question: What is special for p with p ≡ 1 mod 4? Answer: the equation x2 + 1 = 0
has a solution in Fp.


